Tangents to Circles#
Circle Properties Revision#
Theory#
Before studying tangents, let’s review essential circle properties:
Circle equation: \((x - h)^2 + (y - k)^2 = r^2\)
A tangent touches the circle at exactly one point
The tangent is perpendicular to the radius at the point of contact
From an external point, two tangents can be drawn to a circle
Application#
For circle \((x - 3)^2 + (y - 4)^2 = 25\):
Center: \((3, 4)\)
Radius: \(r = 5\)
Any tangent at point \(P\) on the circle is perpendicular to line \(CP\)
Tangents to Circles#
Theory#
Tangent at a Given Point on the Circle#
For a circle \((x - h)^2 + (y - k)^2 = r^2\) and point \((x_1, y_1)\) on the circle, the tangent equation is: $\((x_1 - h)(x - h) + (y_1 - k)(y - k) = r^2\)$
For circle \(x^2 + y^2 = r^2\), the tangent at \((x_1, y_1)\) is: $\(x_1x + y_1y = r^2\)$
Tangent with Given Slope#
To find tangents with slope \(m\) to circle \((x - h)^2 + (y - k)^2 = r^2\):
Tangent form: \(y - k = m(x - h) \pm r\sqrt{1 + m^2}\)
Two tangents exist (unless line passes through center)
Tangents from External Point#
From external point \((x_0, y_0)\) to circle \((x - h)^2 + (y - k)^2 = r^2\):
Length of tangent: \(L = \sqrt{(x_0 - h)^2 + (y_0 - k)^2 - r^2}\)
Angle between tangents: \(\theta = 2\sin^{-1}\left(\frac{r}{\sqrt{(x_0 - h)^2 + (y_0 - k)^2}}\right)\)
Interactive Visualization: Tangent Lines Explorer#
Application#
Examples#
Example 1: Tangent at a Point Find the equation of the tangent to circle \(x^2 + y^2 = 25\) at point \((3, 4)\).
Solution: Using the formula \(x_1x + y_1y = r^2\): \(3x + 4y = 25\)
This is the tangent equation.
Example 2: Tangents with Given Slope Find tangent lines to circle \((x - 2)^2 + (y - 1)^2 = 9\) with slope \(m = \frac{4}{3}\).
Solution: Center: \((2, 1)\), radius: \(r = 3\)
Using the formula: \(y - 1 = \frac{4}{3}(x - 2) \pm 3\sqrt{1 + \frac{16}{9}}\) \(y - 1 = \frac{4}{3}(x - 2) \pm 3\sqrt{\frac{25}{9}}\) \(y - 1 = \frac{4}{3}(x - 2) \pm 5\)
Tangent lines:
\(y = \frac{4}{3}x - \frac{8}{3} + 1 + 5 = \frac{4}{3}x + \frac{10}{3}\)
\(y = \frac{4}{3}x - \frac{8}{3} + 1 - 5 = \frac{4}{3}x - \frac{20}{3}\)
Example 3: Tangents from External Point Find the length of tangents from point \((7, 1)\) to circle \(x^2 + y^2 - 4x - 6y + 9 = 0\).
Solution: First, find center and radius: \((x - 2)^2 + (y - 3)^2 = 4\) Center: \((2, 3)\), radius: \(r = 2\)
Length of tangent: \(L = \sqrt{(7 - 2)^2 + (1 - 3)^2 - 4}\) \(L = \sqrt{25 + 4 - 4}\) \(L = \sqrt{25} = 5\)
Multiple Choice Questions#
Sector Specific Questions: Tangent Applications#
Key Takeaways#
Important
Tangents to Circles - Essential Concepts
Tangent at a Point: For circle \(x^2 + y^2 = r^2\) and point \((x_1, y_1)\):
Tangent: \(x_1x + y_1y = r^2\)
Tangent Properties:
Perpendicular to radius at contact point
From external point: exactly 2 tangents
From point on circle: exactly 1 tangent
From internal point: no tangents
Length Formula: From external point \((x_0, y_0)\) to circle with center \((h, k)\) and radius \(r\): $\(L = \sqrt{(x_0 - h)^2 + (y_0 - k)^2 - r^2}\)$
Tangents with Given Slope \(m\): $\(y - k = m(x - h) \pm r\sqrt{1 + m^2}\)$
Applications: Belt drives, optical systems, risk analysis, lighting design